skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hopkins, Kristina G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This dataset contains tabular data at three scales (city, tract, and synoptic site) and related vector shapefiles (for watersheds or buffers around synoptic sites) for areas included in the Carbon in Urban River Biogeochemistry Project (CURB) to assess how social, built, and biophysical factors shape aquatic functions. The city scale included 486 urban areas in the continental United States with greater than 50,000 residents. Tabular data are provided for each urban area (CURB_CensusUrbanArea.csv) and all U.S. Census tracts within seven urban areas (Atlanta, GA, Boston, MA, Miami, FL, Phoenix, AZ, Portland, OR, Salt Lake City, UT, and San Francisco, CA; CURB_CensusTract.csv) to characterize a range of social, built, and biophysical factors. In six focal cities (Baltimore, MD, Boston, MA, Atlanta, GA, Miami, FL, Salt Lake City, UT, and Portland, OR) up to 100 sites were selected for synoptic water quality sampling. For each synoptic site tabular data (CURB_SynopticSite.csv) are provided to characterize a range of social, built, and biophysical factors within the watershed (Atlanta, Baltimore, Boston, Portland, Salt Lake City) or within a buffer of the site (Miami). Vector shapefiles are provided for the watershed boundaries (CURB_Synoptic_Watersheds.zip) for all synoptic sites in each city except Miami, FL where 400-m buffers (CURB_Miami_Synoptic_Buffers.zip) around the synoptic site were used. 
    more » « less
  2. Abstract Decades of research has concluded that the percent of impervious surface cover in a watershed is strongly linked to negative impacts on urban stream health. Recently, there has been a push by municipalities to offset these effects by installing structural stormwater control measures (SCMs), which are landscape features designed to retain and reduce runoff to mitigate the effects of urbanisation on event hydrology. The goal of this study is to build generalisable relationships between the level of SCM implementation in urban watersheds and resulting changes to hydrology. A literature review of 185 peer‐reviewed studies of watershed‐scale SCM implementation across the globe was used to identify 52 modelling studies suitable for a meta‐analysis to build statistical relationships between SCM implementation and hydrologic change. Hydrologic change is quantified as the percent reduction in storm event runoff volume and peak flow between a watershed with SCMs relative to a (near) identical control watershed without SCMs. Results show that for each additional 1% of SCM‐mitigated impervious area in a watershed, there is an additional 0.43% reduction in runoff and a 0.60% reduction in peak flow. Values of SCM implementation required to produce a change in water quantity metrics were identified at varying levels of probability. For example, there is a 90% probability (high confidence) of at least a 1% reduction in peak flow with mitigation of 33% of impervious surfaces. However, as the reduction target increases or mitigated impervious surface decreases, the probability of reaching the reduction target also decreases. These relationships can be used by managers to plan SCM implementation at the watershed scale. 
    more » « less